Modelling spatial and temporal dynamics of gross primary production in the Sahel from earth-observation-based photosynthetic capacity and quantum efficiency
نویسندگان
چکیده
It has been shown that vegetation growth in semiarid regions is important to the global terrestrial CO2 sink, which indicates the strong need for improved understanding and spatially explicit estimates of CO2 uptake (gross primary production; GPP) in semi-arid ecosystems. This study has three aims: (1) to evaluate the MOD17A2H GPP (collection 6) product against GPP based on eddy covariance (EC) for six sites across the Sahel; (2) to characterize relationships between spatial and temporal variability in EC-based photosynthetic capacity (Fopt) and quantum efficiency (α) and vegetation indices based on earth observation (EO) (normalized difference vegetation index (NDVI), renormalized difference vegetation index (RDVI), enhanced vegetation index (EVI) and shortwave infrared water stress index (SIWSI)); and (3) to study the applicability of EO upscaled Fopt and α for GPP modelling purposes. MOD17A2H GPP (collection 6) drastically underestimated GPP, most likely because maximum light use efficiency is set too low for semi-arid ecosystems in the MODIS algorithm. Intra-annual dynamics in Fopt were closely related to SIWSI being sensitive to equivalent water thickness, whereas α was closely related to RDVI being affected by chlorophyll abundance. Spatial and inter-annual dynamics in Fopt and α were closely coupled to NDVI and RDVI, respectively. Modelled GPP based on Fopt and α upscaled using EO-based indices reproduced in situ GPP well for all except a cropped site that was strongly impacted by anthropogenic land use. Upscaled GPP for the Sahel 2001–2014 was 736± 39 g C m−2 yr−1. This study indicates the strong applicability of EO as a tool for spatially explicit estimates of GPP, Fopt and α; incorporating EO-based Fopt and α in dynamic global vegetation models could improve estimates of vegetation production and simulations of ecosystem processes and hydro-biochemical cycles.
منابع مشابه
Evaluation of rangeland gross primary productivity sensitivity potential to drought using ecosystem modelling
Gross primary productivity is one of the most important factors in the carbon cycle of terrestrial ecosystems. With global warming increase, the frequent drought events and the specific response of regional vegetation to these changes, it is essential to identify and quantify the relationships between climatic and GPP data in arid region. In this study, the responses of gross primary productivi...
متن کاملThe Study of Different Water Regimes on Photosynthetic Performance and Leaf Water Status of Pistachio Trees (Pistacia vera L.)
Water deficiency is one of the most important environmental stresses that limit plant growth and crop production. Measurement of chlorophyll fluorescence parameters is considered as an important indicator to evaluate the photosynthetic apparatus. In the present study, the effects of regulated water deficit, investigated in four water-regimes in pistachio orchard with 12-year-old trees of Akbari...
متن کاملModelling the Dynamics of Human Resources Capacity in Health Care Services A Case Study of Khatam-al-Anbia Hospital of Mashhad
Background: In service organizations such as hospitals, human resources (HR) play a key role in the quality of service delivery. Lack of a systemic attitude in terms of system dynamics, HR planning have been somewhat distant from reality. In order to solve such a problem, this study aimed to modeling the dynamics of human resources capacity management system in healthcare services. Material...
متن کاملEvaluating Water Controls on Vegetation Growth in the Semi-Arid Sahel Using Field and Earth Observation Data
Water loss is a crucial factor for vegetation in the semi-arid Sahel region of Africa. Global satellite-driven estimates of plant CO2 uptake (gross primary productivity, GPP) have been found to not accurately account for Sahelian conditions, particularly the impact of canopy water stress. Here, we identify the main biophysical limitations that induce canopy water stress in Sahelian vegetation a...
متن کاملLeaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems
Leaf chlorophyll content (Chll) may serve as an observational proxy for the maximum rate of carboxylation (Vmax), which describes leaf photosynthetic capacity and represents the single most important control on modeled leaf photosynthesis within most Terrestrial Biosphere Models (TBMs). The parameterization of Vmax is associated with great uncertainty as it can vary significantly between plants...
متن کامل